博客
关于我
python入门教程 - 滑块实战[附源码]
阅读量:743 次
发布时间:2019-03-22

本文共 5981 字,大约阅读时间需要 19 分钟。

环境安装

安装python需要的依赖包
cv2 安装可以参考这里:
安装webdriver -> chrome
下载对应版本,放在本地 D:\anaconda3\Scripts 目录下

效果展示

GIF效果:
cv2使用参考:
注意:测试时慢点刷,容易封IP。

源码

有问题可以留言探讨,公众号:JavaPub
对源码加了大量注释
测试网站:

import os
import cv2
import time
import random
import requests
import numpy as np
from PIL import Image
from io import BytesIO
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver import ActionChains
from selenium.webdriver.support.wait import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
class CrackSlider():
def __init__(self):
self.browser = webdriver.Chrome()
self.s2 = r'//*[@id="captcha_div"]/div/div[1]/div/div[1]/img[1]'
self.s3 = r'//*[@id="captcha_div"]/div/div[1]/div/div[1]/img[2]'
self.url = 'http://app.miit-eidc.org.cn/miitxxgk/gonggao/xxgk/queryCpParamPage?dataTag=Z&gid=U3119671&pc=303'
self.wait = WebDriverWait(self.browser, 20)
self.browser.get(self.url)
def get_img(self, target, template, xp):
time.sleep(3)
target_link = self.browser.find_element_by_xpath(self.s2).get_attribute("src")
template_link = self.browser.find_element_by_xpath(self.s3).get_attribute("src")
target_img = Image.open(BytesIO(requests.get(target_link).content))
template_img = Image.open(BytesIO(requests.get(template_link).content))
target_img.save(target)
template_img.save(template)
size_loc = target_img.size
print('size_loc[0]-----\n')
print(size_loc[0])
zoom = xp / int(size_loc[0])
print('zoom-----\n')
print(zoom)
return zoom
def change_size(self, file):
image = cv2.imread(file, 1)
img = cv2.medianBlur(image, 5)
b = cv2.threshold(img, 15, 255, cv2.THRESH_BINARY)
binary_image = b[1]
binary_image = cv2.cvtColor(binary_image, cv2.COLOR_BGR2GRAY)
x, y = binary_image.shape
edges_x = []
edges_y = []
for i in range(x):
for j in range(y):
if binary_image[i][j] == 255:
edges_x.append(i)
edges_y.append(j)
left = min(edges_x)
right = max(edges_x)
width = right - left
bottom = min(edges_y)
top = max(edges_y)
height = top - bottom
pre1_picture = image[left:left + width, bottom:bottom + height]
return pre1_picture
def match(self, target, template):
img_gray = cv2.imread(target, 0)
img_rgb = self.change_size(template)
template = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY)
res = cv2.matchTemplate(img_gray, template, cv2.TM_CCOEFF_NORMED)
run = 1
L = 0
R = 1
while run < 20:
run += 1
threshold = (R + L) / 2
if threshold < 0:
print('Error')
return None
loc = np.where(res >= threshold)
if len(loc[1]) > 1:
L += (R - L) / 2
elif len(loc[1]) == 1:
break
elif len(loc[1]) < 1:
R -= (R - L) / 2
res = loc[1][0]
print('match distance-----\n')
print(res)
return res
def move_to_gap(self, tracks):
slider = self.wait.until(EC.element_to_be_clickable((By.CLASS_NAME, 'yidun_slider')))
ActionChains(self.browser).click_and_hold(slider).perform()
while tracks:
x = tracks.pop(0)
ActionChains(self.browser).move_by_offset(xoffset=x, yoffset=0).perform()
time.sleep(0.05)
ActionChains(self.browser).release().perform()
def move_to_gap1(self, distance):
distance += 46
time.sleep(1)
element = self.browser.find_element_by_xpath(self.s3)
ActionChains(self.browser).click_and_hold(on_element=element).perform()
ActionChains(self.browser).move_to_element_with_offset(to_element=element, xoffset=distance, yoffset=0).perform()
time.sleep(1.38)
ActionChains(self.browser).release(on_element=element).perform()
def move_to_gap2(self, distance):
element = self.browser.find_elements_by_class_name("yidun_slider")[0]
action = ActionChains(self.browser)
mouse_action = action.click_and_hold(on_element=element)
distance += 11
distance = int(distance * 32/33)
move_steps = int(distance/4)
for i in range(0,move_steps):
mouse_action.move_by_offset(4,random.randint(-5,5)).perform()
time.sleep(0.1)
mouse_action.release().perform()
def get_tracks(self, distance, seconds, ease_func):
distance += 20
tracks = [0]
offsets = [0]
for t in np.arange(0.0, seconds, 0.1):
ease = ease_func
offset = round(ease(t / seconds) * distance)
tracks.append(offset - offsets[-1])
offsets.append(offset)
tracks.extend([-3, -2, -3, -2, -2, -2, -2, -1, -0, -1, -1, -1])
return tracks
def get_tracks1(self, distance):
"""根据偏移量获取移动轨迹
:param distance: 偏移量
:return: 移动轨迹
"""
track = []
current = 0
mid = distance * 4 / 5
t = 0.2
v = 0
while current < distance:
if current < mid:
a = 4
else:
a = -3
v0 = v
v = v0 + a * t
move = v0 * t + 1 / 2 * a * t * t
current += move
track.append(round(move))
return track
def ease_out_quart(self, x):
res = 1 - pow(1 - x, 4)
return res
if __name__ == '__main__':
xp = 320
target = 'target.jpg'
template = 'template.png'
cs = CrackSlider()
zoom = cs.get_img(target, template, xp)
distance = cs.match(target, template)
track = cs.get_tracks((distance + 7) * zoom, random.randint(2, 4), cs.ease_out_quart)
cs.move_to_gap(track)

转载地址:http://qyfwk.baihongyu.com/

你可能感兴趣的文章
NLP:使用 SciKit Learn 的文本矢量化方法
查看>>
NLTK - 停用词下载
查看>>
nmap 使用总结
查看>>
nmap 使用方法详细介绍
查看>>
nmap使用
查看>>
nmap使用实战(附nmap安装包)
查看>>
Nmap哪些想不到的姿势
查看>>
Nmap扫描教程之Nmap基础知识
查看>>
nmap指纹识别要点以及又快又准之方法
查看>>
Nmap渗透测试指南之指纹识别与探测、伺机而动
查看>>
Nmap端口扫描工具Windows安装和命令大全(非常详细)零基础入门到精通,收藏这篇就够了
查看>>
NMAP网络扫描工具的安装与使用
查看>>
NMF(非负矩阵分解)
查看>>
nmon_x86_64_centos7工具如何使用
查看>>
NN&DL4.1 Deep L-layer neural network简介
查看>>
NN&DL4.3 Getting your matrix dimensions right
查看>>
NN&DL4.7 Parameters vs Hyperparameters
查看>>
NN&DL4.8 What does this have to do with the brain?
查看>>
nnU-Net 终极指南
查看>>
No 'Access-Control-Allow-Origin' header is present on the requested resource.
查看>>